메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
심현석 (숭실대학교) 박정수 (숭실대학교) 단티엔북 (숭실대학교) 정수환 (숭실대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제29권 제6호
발행연도
2019.12
수록면
1,235 - 1,242 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 머신러닝 기반의 악성코드 분류에 있어 오버피팅 문제를 비롯하여 실제로 실행되지 않는 코드가 APK에 포함되는 문제 등을 해결하기 위해 모든 API들의 연관성을 통해 그룹화하며, 제어 흐름 분석을 통해 실제로 실행되는 코드에 대한 분석을 수행하는 툴을 개발하였다. 툴은 약 1,500라인으로 이루어진 자바 기반의 소프트웨어로, 전체 API에 대한 빈도 분석을 수행하거나 생성된 제어 흐름 그래프를 바탕으로 빈도 분석을 수행한다. 툴을 이용하여 모든 버전에서의 총 39032개의 메서드에 대해 4972개의 그룹으로 축소할 수 있으며, 클래스를 포함한 결과로는 총 12123개의 그룹으로 축소할 수 있다. 결과 분석을 위해서 본 논문에서는 총 7개의 패밀리에서 7,000개의 APK를 랜덤으로 수집하였으며, 수집된 APK를 이용하여 feature를 축소하는 기법을 검증하였다. 또한, 추출된 데이터에서 빈도가 20% 이상으로 나타난 API만을 선별하여 feature를 더욱 축소하여 최종적으로 263개의 feature로 축소하였다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 구현
IV. Feature 추가 축소 및 분석
V. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0