메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조영민 (삼성SDS) 권헌영 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제30권 제1호
발행연도
2020.2
수록면
51 - 58 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
사이버 위협에 있어서 악성코드를 활용하는 것은 시대를 불문하고 지속적으로 활용되고 있고, 앞으로 IT기술이 발전하여도 여전히 주요한 공격 방법이 될 것이다. 따라서 이러한 악성코드를 탐지하기 위한 연구는 끊임없이 다양한 방법으로 시도되고 있다. 최근에는 AI 관련 기술이 발전하면서 악성코드 탐지에도 이와 관련한 연구를 많이 진행하고 있다. 본 연구에서는 동적분석 데이터 중 API Call이 발생하는 각각의 호출간격, 즉 시간차이(Time Interval)을 중심으로 특징값(Feature)을 생성하고, 이를 머신러닝 기법에 적용하여 악성코드를 탐지하는 방안을 제시하고자 한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. Time Interval 기반 탐지 방안
Ⅳ. 실험 결과 및 분석
Ⅴ. 결론
References

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000424479