메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
박정서 (국방대학교) 문성암 (국방대학교) 최진우 (국방대학교)
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회 2021년 춘계 공동학술대회 논문집 [2개 학회 공동주최]
발행연도
2021.6
수록면
1,077 - 1,095 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
As the naval maintenance policy, the ROK Navy is adopting a planned maintenance which means maintenance is executed for battleships based on their operation time. Although a regular maintenance cycle would give us some stable manner, it is limited to cover the failure rate of battleships. Also, the appropriateness of the length of the maintenance cycle should be considered. In this study, we can see the effectiveness and efficiency, if the planned maintenance could be adopted based on the probabilities of failure instead of the regular cycles.
This approach for the planned maintenance has been tried in previous study(Choi et al., 2020) only for one ship. I will, however, adopt the planned maintenance for a group of the same class(000-0) battleships which is made up of six battleships. Especially, I simulated the maintenance capability of the naval shipyards very similar to the actual one in my study. The planned maintenance based on probability could not keep its regular maintenance cycle. If I make the maintenance capability a constant value, the waiting time for maintenance for battleships will be prolonged. This prolonged waiting time makes the operation readiness level of the ROK Navy lower than before. The total count of maintenance performance, the failure rate between each maintenance, the mean time between each maintenance, and the available rate have been analyzed by the maintenance queue method in the study. It was compared with the schedule period planning maintenance model currently being carried out by the Navy.

목차

1. 서론
2. 이론적 배경
3. 계획정비 모델 구축
4. 결과분석
5. 결론
6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-325-001883190