메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
여은정 (서울대학교) 김선희 (서울대학교) 정민화 (서울대학교)
저널정보
한국음성학회 말소리와 음성과학 말소리와 음성과학 제13권 제2호
발행연도
2021.6
수록면
57 - 66 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문은 말 명료도 기준의 마비말장애 중증도 자동 분류 문제에 초점을 둔다. 말 명료도는 호흡, 발성, 공명, 조음, 운율 등 다양한 말 기능 특징의 영향을 받는다. 그러나 대부분의 선행연구는 한 개의 말 기능 특징만을 중증도 자동분류에 사용하였다. 본 논문에서는 음성의 장애 특성을 효과적으로 포착하기 위해 마비말장애 중증도 자동 분류에서 음질, 운율, 발음의 다양한 말 기능 특징을 반영하고자 하였다. 음질은 jitter, shimmer, HNR, voice breaks 개수, voice breaks 정도로 구성된다. 운율은 발화 속도(전체 길이, 말 길이, 말 속도, 조음 속도), 음높이(F0 평균, 표준편차, 최솟값, 최댓값, 중간값, 25 사분위값, 75 사분위값), 그리고 리듬(% V, deltas, Varcos, rPVIs, nPVIs)을 포함한다. 발음에는 음소 정확도(자음 정확도, 모음 정확도, 전체 음소 정확도)와 모음 왜곡도[VSA(vowel space area), FCR (formant centralized ratio), VAI(vowel articulatory index), F2 비율]가 있다. 본 논문에서는 다양한 특징 조합을 사용하여 중증도 자동 분류를 시행하였다. 실험 결과, 음질, 운율, 발음 특징 세 가지 말 기능 특징 모두를 분류에 사용했을 때 F1-score 80.15%로 가장 높은 성능이 나타났다. 이는 마비말장애 중증도 자동 분류에는 음질, 운율, 발음 특징이 모두 함께 고려되어야 함을 시사한다.

목차

Abstract
1. 서론
2. 방법론
3. 데이터베이스
4. 실험 결과
5. 결론
References
국문초록
참고문헌

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-700-001879582