메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이연진 (연세대학교) 임호균 (연세대학교)
저널정보
한국실내디자인학회 한국실내디자인학회 논문집 한국실내디자인학회 논문집 제30권 제3호(통권 제146호)
발행연도
2021.6
수록면
19 - 27 (9page)
DOI
10.14774/JKIID.2021.30.3.019

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Customers" online reviews have important business value in the age of big data. Especially in the accommodation industry, online review analysis has become one of the important data sources for researchers to understand customer behavior and investigate customer satisfaction. Based on 5715 online reviews of airbnb in Lijiang, China, Dec, 2020. This study analyzes the attractive factors of homestays in Lijiang, China, and explores consumers" views and attitudes towards Lijiang homestays. Through keyword analysis, hierarchical clustering analysis and Critical Incidents Technique, 15 attractive factors of Lijiang Airbnb were extracted from the corpus. The research results show that room and location are the most important attributes in consumer reviews, followed by environment and service. In addition, in the accommodation experience, the host as a service provider plays an important role in all aspects. These factors have an important impact on consumer satisfaction and booking propensity. Combined with the content of the comments, it explains how each factors affects the consumer"s living experience. This research expands the attributes that affect the airbnb consumer experience and provides marketing advice to homestay operators to help them better understand customer online review behavior and to help operators understand how to get a positive word-of-mouth evaluation in online reviews. Methodologically, this research has contributed to how to use and visualize big data in the P2P accommodation industry.

목차

Abstract
1. 서론
2. 이론적 배경
3. 분석 결과
4. 결론
참고문헌

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-619-001848254