메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kwonsik Park (Korea University) Sanghoun Song (Korea University)
저널정보
한국영어학회 영어학 영어학 Volume.21
발행연도
2021.1
수록면
487 - 509 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Constructing deep learning models that identify nativelikeness in English sentences, this paper addresses two relevant research questions: is nativelikeness measurable, and is it determined by syntactic well-formedness and lexical associations? To address the first, our models are evaluated by judging every item in Test Suite I, which comprises learner and native sentences from four sources. The results show that the models predict nativelikeness reasonably well. Next, syntactic well-formedness is examined via Test Suite II, comprising correct–incorrect minimal pairs with two conditions. The results indicate that our models do not satisfactorily detect it. The learners’ results reveal their limited knowledge, suggesting that the models learn the inadequateness of lexical associations as a feature of non-nativelikeness because the learner training data comprises Korean English learner corpora. However, our models’ results also show poor performance. We conclude that deep learning is capable of measuring nativelikeness, and well-formedness and lexical associations are no more than necessary conditions for nativelikeness. This implies the need to consider other factors when defining and assessing nativelikeness.

목차

ABSTRACT
1. Introduction
2. System
3. Experiment I: Is Nativelikeness Measurable?
4. Experiment II: Is Syntactic Well-formedness a Decisive Factor?
5. Experiment III: Is Lexical Association a Critical Factor?
6. Conclusion
References

참고문헌 (60)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0