메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyesun Cho (Dankook University)
저널정보
한국영어학회 영어학 영어학 Volume.22
발행연도
2022.1
수록면
19 - 39 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Neural-network models have recently been used to assess nativelikeness of English sentences written by native or nonnative speakers. In this study, nativelikeness of Korean EFL college students’ English writing is assessed using fastText, a neural-network text classifier using subword information. The training data consisted of English sentences from the corpora of native speakers of English and Korean EFL college students. The test sentences consisted of English writing assignments written by Korean EFL college students. fastText performed well for the task of binary classification into native and nonnative sentences, with high accuracy in less than a minute. The sentences that are classified as native with a high probability tend to have fewer grammatical as well as plausibility errors than those classified as nonnative. For the test sentences, correcting grammatical errors (involving articles, number, subject-verb agreement, voice) had weaker effects on the classification of the sentences than correcting plausibility errors (word choices), which conforms to the previous literature. This suggests that fastText is more sensitive to plausibility errors than grammaticality errors which requires knowledge on hierarchical syntactic structures.

목차

ABSTRACT
1. Introduction
2. Research Method: Text Classification Using fastText
3. Results
4. The Effects of Correcting Errors
5. Discussion and Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0