메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이민예 (고려대학교) 성기우 (현대자동차) 한성원 (고려대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제47권 제3호
발행연도
2021.6
수록면
302 - 314 (13page)
DOI
10.7232/JKIIE.2021.47.3.302

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a TSLF methodology, which is a Transfer learning with Seasonal adjustment for Long-term Forecasting. The lack of learning data has been a chronic problem in the field of long-term demand forecasting for automotive spare parts which tends to lead to the over-fitting. To solve this problem, we used transfer learning. Transfer learning is actively used in various industries as a technique for reusing pre-trained models to improve the performance of tasks with small data, but there are no research cases applying it. The main idea is to utilize trends that are highly related to other parts as the source domain, and to migrate the pre-trained network while retaining the feature extraction layer. Experiments show that this method mitigates over-fitting problem and reduces error by 14.85% on MAE and 11.3% on RMSE than the traditional method in the small data set.

목차

1. 서론
2. 관련 연구
3. 방법론
4. 실험 결과
5. 결론 및 활용방안
참고문헌

참고문헌 (45)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-530-001747187