메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Dongryul Jang Minjae Park (Hongik University)
저널정보
한국경영학회 경영학연구 경영학연구 제50권 제2호
발행연도
2021.4
수록면
357 - 381 (25page)
DOI
10.17287/kmr.2021.50.2.357

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, many researchers not only from industry but also from academia have interested in the art finance market. Although many people have studied growing art finance market, very few studies on the prediction model to evaluate the art price have been conducted. Therefore, in this study we have gathered a database of 12,105 paintings auctioned between 2009 and 2018 and have implemented decision tree-based machine learning algorithms (e.g., random forests, gradient boosting, XGboost) to develop prediction models for art prices and to improve the reliability for art experts’ estimates accurately. We have compared the prediction accuracy of the proposed approach based on root mean square error and mean absolute error. As a result of the analysis, we noticed that experts’ estimates from auction houses are more accurate only for high-priced artworks but overestimates low-priced artworks. On the other hand, the suggested prediction model’s accuracy considering decision tree-based model is better than the accuracy based on the parametric OLS model. Finally, we test the accuracy of prediction models considering expert evaluation to enhance the models’ predictive power. These results show that an integrated approach between expert appraisal systems and statistical models improves the prediction accuracy for artworks’ price.

목차

Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 연구 방법 및 분석 자료
Ⅳ. 결과 분석
Ⅴ. 결론
참고문헌

참고문헌 (41)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0