메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Younghee Cheri Lee (Chung-Ang University)
저널정보
한국영어학회 영어학 영어학 Volume.21
발행연도
2021.1
수록면
261 - 281 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Driven by the linguistic values of closed-class words, this article seeks to provide a multifaceted account of function words as markers of translationese, thereby aiming to reconceptualize the universal trait of translational manifestations found in non-translated L2 writing. To that end, using comparable monolingual English corpora from two different disciplines, this study implemented a two-fold analysis to compare a conventional analytical model (i.e., “all-token variable” of function words) with a modified approach (i.e., “subset variables” of function words). The “all-token” method has been one of the most unstable measures in the studies of translation universals (TU) and still lacks a coherent understanding of how specific function words should be attested in their predictive roles in translationese. As contrasted with conventional TU assumptions, it was evidenced that the “all-token” function words outperformed only in a single domain, a result that distanced from the universal traits of translationese. Instead, as one of the subset variables, auxiliary verbs demonstrated a higher predictive and universal power as a newly attested translationese marker. Thus, this article argues that the notion of translationese should be reframed as “universal” translationese and “domain-specific” translationese, respectively. The rationale lies in that the predictive roles of subset function words have been overshadowed by the inconsistent analytical method implemented in translation studies to date.

목차

ABSTRACT
1. Introduction
2. Literature Review
3. Methods
4. Results
5. Discussion
6. Conclusion
References

참고문헌 (98)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0