메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
SungHwan Kim (Konkuk University) Seok-Mo Heo (Chonbuk National University) SeongMin Yang (Konkuk University) Yeongeun Kim (Konkuk University) JiSung Han (Konkuk University) SeHee Jung (DeepVisions)
저널정보
계명대학교 자연과학연구소 Quantitative Bio-Science Quantitative Bio-Science Vol.39 No.2
발행연도
2020.11
수록면
159 - 167 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a method based on a weight map to improve the performance of instance segmentation and demonstrate the method using a simple application. A weight map is a set of pixel-wise losses, each of which has a different value depending on whether the pixel is located on the border of the image. Importantly, the losses of pixels on the border have a relatively higher value than the other pixels so that they can impose heavy penalties in the training stage. We verified the effectiveness of our method by assessing its performance when processing clinical dental images. Because teeth have similar image features (e.g., color, shape), and as they are arranged side by side, it is appropriate to evaluate the effect of using a weight map. With reference to the weight map, Mask R-CNN, our baseline model, learns very small, narrow boundaries to distinguish different instances that were recognized as one instance before. The improvement is evident both quantitatively and qualitatively. The Average Precision and Recall were found to have increased by 4.4% and 7.3%, respectively, with weight map learning. Thus, the proposed method was demonstrated to effectively enhance the ability to detect subtle boundaries. This finding is expected to make it possible to utilize a variety of existing models to their fullest potential.

목차

ABSTRACT
1. Introduction
2. Mask R-CNN
3. Proposed Method
4. Numerical Experimentation
5. Conclusion
References

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-047-000077780