메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Zilong Cheng (National University of Singapore) Jun Ma (University of California) Xiaoxue Zhang (National University of Singapore) Tong Heng Lee (National University of Singapore)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
82 - 87 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A lasso model predictive control (MPC) problem solved by the alternative direction method of multipliers (ADMM) is investigated in this work. More specifically, a semi-proximal ADMM algorithm with Gauss-Seidel iterations is proposed to solve the lasso MPC problem with singular weighting matrices. It is well-known that the interior-point algorithm is an effective and efficient algorithm, which is commonly used to obtain the real-time solution to the MPC optimization problem. However, when the weighting matrices of the lasso MPC problem are singular, it is extremely challenging to solve the optimization problem by using the classical interior-point algorithm. In fact, in some special cases, the interior-point algorithm is entirely infeasible for solving the aforementioned problems. In the work here, our developments reveal that the proposed optimization methodology (a semi-proximal ADMM algorithm with Gauss-Seidel iterations) is much more advantageous compared to the interior-point algorithm in some specific cases, especially in the case where singular weighting matrices exist in the cost function. An MPC based tracking problem of an unmanned aerial vehicle (UAV) system is implemented to compare the performance of the proposed algorithm to the performance of the existing solver. The simulation result shows that with the proposed algorithm, higher accuracy and computational efficiency can be realized.

목차

Abstract
1. INTRODUCTION
2. PROBLEM FORMULATION
3. OPTIMIZATION
4. DYNAMICS MODELING
5. SIMULATION VALIDATION
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001570988