메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jaesung Kim (Institute for Advanced Engineering) Jooheon Park (Institute for Advanced Engineering) Sanghyeok Jeong (Institute for Advanced Engineering) Bokdeok Seo (KIA motors)
저널정보
대한용접·접합학회 대한용접·접합학회지 大韓熔接·接合學會誌 第38卷 第5號
발행연도
2020.10
수록면
460 - 468 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
To ensure quality of spot welds, various nondestructive testing methods are used in addition to destructive testing methods, such as tensile shear tests and metallographic examination. Specifically, ultrasonic evaluation is widely used for measuring the nugget size in resistance spot welding. This study focuses on determining the possibility of establishing a standard to evaluate the quality of resistance spot welding in real time using servo-gun displacement data. Two-, three, and four-layered materials, including galvanized steel and hot stamped steel, were used in the experiment. To obtain a welding lobe diagram, we performed resistance spot welding three times under the same conditions, and secured the servo-gun data, which change depending on the expansion and contraction of the material. The strength and fracture mode data obtained from a tensile shear test were compared with the servo-gun displacement data, and the results were analyzed. The results evidently confirmed that the displacement data of the electrode of the medium-sized C gun clearly correlated with the tensile strength data of welding. However, the displacement data of the large C gun exhibited a slightly low correlation, presumably because of a mechanical issue. Furthermore, it was predicted that the results of this study could be used for real-time welding quality evaluation with minimal additional costs.

목차

Abstract
1. Introduction
2. Experimental method
3. Experimental results and discussion
4. Conclusion
Reference

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-581-001591160