메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김일수 (목포대학교) 신윤덕 (온주대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제27권 제12호
발행연도
2021.12
수록면
978 - 983 (6page)
DOI
10.5302/J.ICROS.2021.21.0183

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Generally, in welding technology, big data refers to data that is too large, fast, or complex for processing using traditional methods. For the past years, the act of accessing and storing large amounts of information for welding has been utilized. Welding technology is a central component of numerous value creation chains and plays an important role in this development. In this study, gas metal arc (GMA) welding experiments were conducted to develop an algorithm for predicting welding defects in the GMA melting process of flat plates on SS400 materials using big data technology. The correlation between various welding parameters was analyzed using the real-time measured current and voltage data during welding. In addition, the welding quality related to the weld bead was analyzed using a 3D scanner. The optimal welding parameters were predicted using a CHMM model for the welShen Yun Deding current signal in the normal welding section, which is one of the machine learning technologies. By learning this, the similarity between the normal welding current signal and the weld defect was expressed as a probability, and the changed pattern of the Log-pdf value was used to predict the welding quality.

목차

Abstract
I. 서론
II. GMA 용접실험
III. 결과 및 고찰
IV. 결론
REFERENCES

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-003-000045228