메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Gi Ju Lee (Dongguk University) Sung Min Park (Dongguk University) Junghyun Jung (Dongguk University) Jong Wha J. Joo (Dongguk University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.20 No.3
발행연도
2020.9
수록면
219 - 226 (8page)
DOI
10.5391/IJFIS.2020.20.3.219

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A typical genome-wide association study is conducted through a single-phenotype analysis of the correlation between each phenotype and genotype one at a time. Alternatively, a multiple-phenotype analysis of the correlation between multiple phenotypes and a genotype often has many advantages over single-phenotype analysis. For example, statistical power in the association test may be increased in a multiple-phenotype analysis and thus may detect small effects that cannot be identified in a single-phenotype analysis. Of the several multiple-phenotype analytical methods that have been proposed, generalized analysis of molecular variance for mixed-model analysis (GAMMA) is used to analyze many phenotypes simultaneously while considering the population structure. This method shows higher accuracy than the other methods. However, GAMMA has not been widely used because no automated and user-friendly software is available; this is also the case with most other multiple-phenotype analysis methods. In addition, the lack of a parallel-processing option, which is essential in a genome-wide-association-studies analysis, is also prevalent in GAMMA. In this study, we propose an easy-to-use R package for GAMMA called GAMMA Renew (GAMMAR) that performs multiple-phenotype analysis using parallel processing. We evaluate GAMMAR using a recently published yeast dataset to locate trans-regulatory hotspots.

목차

Abstract
1. Introduction
2. Related Work
3. Methods
4. Results
5. Conclusion
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0