메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이범주 (한국한의학연구원)
저널정보
(사)국제문화기술진흥원 문화기술의 융합 문화기술의 융합 제5권 제4호
발행연도
2019.1
수록면
413 - 420 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구의 목적은 기존의 body fat mass 변수와 고콜레스테롤혈증의 연관성연구를 벗어나, 머신러닝기법을 기반으로 body fat mass 변수들의 조합을 이용하여 고콜레스테롤혈증 예측 모델을 개발하는 것이다. 이러한 연구를 위하여 국민건강영양조사 데이터를 기반으로 두 가지 variable selection 메소드와 머신러닝 알고리즘을 이용하여 총 6개의 모델을 생성하였고 질병 예측력을 비교분석하였다. 여러 body fat mass 관련 변수들 중에서 몸통지방량 변수가 고콜레스테롤혈증 예측력이 가장 우수한 변수인 것을 밝혀내었고, 머신러닝 기반 예측모델들 중에서 correlation-based feature subset selection 기반 naive Bayes 알고리즘을 이용한 모델이 0.739의 the area under the receiver operating characteristic curve 값과 0.36의 Matthews correlation coefficient 값을 얻었다. 이러한 연구의 결과는 향후 국내외 대규모 스크리닝 및 대중보건 연구에서 질병예측분야의 중요정보로 활용될 것으로 예상한다.

목차

등록된 정보가 없습니다.

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0