메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김용준 (아주대학교 컴퓨터공학과)
저널정보
한국인터넷방송통신학회 한국인터넷방송통신학회 논문지 한국인터넷방송통신학회 논문지 제19권 제4호
발행연도
2019.1
수록면
169 - 174 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 설문지를 이용한 데이터 수집과 데이터 마이닝에서 클러스터링 기법으로 군집하여 지도학습을 이용하여 유사성을 판단하고, 성격들의 상관 관계의 적합성을 분석하기 위해 특징 추출 알고리즘들과 지도학습을 이용하는 것을 목표로 진행한다. 연구 수행은 설문조사를 진행 후 그 설문조사를 토대로 모인 데이터들을 정제하고, 오픈 소스 기반의 데이터 마이닝 도구인 WEKA의 클러스터링 기법들을 통해 데이터 세트를 분류하고 지도학습을 이용하여 유사성을 판단한다. 그리고 특징 추출 알고리즘들과 지도학습을 이용하여 성격에 대해 적합한 결과가 나오는지에 대한 적합성을 판단한다. 그 결과 유사성 판단에 가장 정확도 높게 도움을 주는 것은 EM 클러스터링으로 3개의 분류하고 Naïve Bayes 지도학습을 시킨 것이 가장 높은 유사성 분류 결과를 도출하였고, 적합성을 판단하는데 도움이 되도록 특징추출과 지도학습을 수행하였을 때, Big-5 각 성격마다 문항에 추가되고 삭제되는 것에 따라 정확도가 변하는 모습을 찾게 되었고, 각 성격 마다 차이에 대한 분석을 완료하였다.

목차

등록된 정보가 없습니다.

참고문헌 (4)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0