메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이수정 (성균관대학교 정보통신공학부 BK21 사업단) 이강성 (광운대학교 교양학부) 김순협 (광운대학교 컴퓨터공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제28권 제1호
발행연도
2009.1
수록면
77 - 83 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 비정상 잡음환경에서 음질향상을 위한 비선형 함수와 사전 음성부재 확률을 이용한 최소 통계치(MS) 방법의 잡음전력편의 보상 방법을 제안한다. 비정상 잡음환경에서 잡음전력추정을 위해 최소 통계치 방법이 잘 알려져 있지만, 예측된 잡음전력 추정 값은 실제 잡음 전력 값보다 하향 편의 되는 특성을 나타낸다. 제안한 방법은 비선형 함수를 적용한 적응보상파라미터와 사전 음성부재 확률 값을 혼용하는 잡음전력편의 보상방법이다. 특히, 적응보상 파라미터는 사후 SNR을 이용한 비 선형함수를 적용하여 잡음수준의 증감에 따라 파라미터 값을 조절한다. 또한, 사전 음성부재확률 값이 1로 수렴할 경우, 적응보상파라미터 값은 각 주파수별로 최대치까지 증가하지만, 확률 값이 0에 가까워지면 반대의 특성을 나타낸다. 제안한 알고리즘의 잡음전력추정 및 음질향상의 성능평가를 위해 다양한 종류의 잡음과 비정상적인 극심한 잡음환경을 설정하여 실험하고, 음질향상을 위해 주파수 차감법과 결합하였다. 알고리즘의 성능은 다양한 잡음환경의 신호 대 잡음비 (SNR)와 Itakura-Saito 음질왜곡 평가법을 이용하여 기존 최소 통계치 (MS)방법에 비해 우수한 결과를 나타냈다.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0