메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Taghavi, M. (Department of Mathematics, Shiraz University)
저널정보
한국전산응용수학회 Journal of applied mathematics & informatics Journal of applied mathematics & informatics 제26권 제5호
발행연도
2008.1
수록면
973 - 981 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper we focus on a type of Unimodular polynomial pair used for digital systems and present some new properties of them which lead us to estimation of their autocorrelation coefficients and the moments of a Rudin-Shapiro polynomial product. Some new results on the Rudin-shapiro sequences will be presented in the last section. Main Facts: For positive integers M and n with $M\;<\;2^n$ - 1, consider the $2^n$ - M numbers ${\epsilon}_k$ ($M\;{\leq}\;k\;{\leq}\;2^n$ - 1) which form a collection of Rudin-Shapiro coefficients. We verify that $|{\sum}_{k=M}^{2^{n-1}}\;{{\epsilon}_k}e^{ikt}|$ is dominated by $(2+\sqrt{2})\;\sqrt {2^n-M}-{\sqrt{2}}$.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0