메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Taghavi, M. (Dept. of Mathematics Shiraz University)
저널정보
한국전산응용수학회 The Korean journal of computational & applied mathematics, 한국전산응용수학술지 Series A The Korean journal of computational & applied mathematics, 한국전산응용수학술지 Series A 제5권 제1호
발행연도
1998.1
수록면
235 - 240 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Given a Unimodular polynomial P of degree N$\geq$1, the exteremal problem for ${\gamma}$ =max{|P(eit)|:0 $\leq$t$\leq$2$\pi$} satisfies ${\gamma}$$\leq$C{{{{ SQRT { N+1} where C is a universal constant. Here we show that C < 2+{{{{ whenever N is fixed and P has the coefficients of a Rudin-Shapiro polynomial.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0