메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Shin, Yong-Su (Department of Mathematics, Sungshin Women's University)
저널정보
한국전산응용수학회 Journal of applied mathematics & informatics Journal of applied mathematics & informatics 제26권 제3호
발행연도
2008.1
수록면
779 - 784 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We show that $\mathbb{Z}[\sqrt{-p}]$ is not a unique factorization domain (UFD) but a factorization domain (FD) with a condition $1\;+\;a^2p\;=\;qr$, where a and p are positive integers and q and r are positive primes in $\mathbb{Z}$ with q < p. Using this result, we also construct several specific non-unique factorization domains which are factorization domains. Furthermore, we prove that an integral domain $\mathbb{Z}[\sqrt{-p}]$ is not a UFD but a FD for some positive integer p.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0