메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김은미 (경희대학교)
저널정보
한국인터넷전자상거래학회 인터넷전자상거래연구 인터넷전자상거래연구 제20권 제4호
발행연도
2020.8
수록면
99 - 111 (13page)
DOI
10.37272/JIECR.2020.08.20.4.99

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Tourism online reviews influence decision-making for tourist attraction selection and try to reduce uncertainty by using online reviews that have been experience and provided by users who have visited in advance. Online reviews are recognized as a new source of information in the tourism sector and more important than official information. Sentiment analysis is widely applied to analyze online reviews, and sentimental analysis extracts the emotions of reviewers inherent in the reviews and classifies them as positive or negative. Recently, it is classified as more detailed emotions, not simply positive or negative.
In this study, online reviews are used to predict tourist spot, and detailed sentiment analysis is applied. Tourist spot is the most popular destinations for tourists, but tourists" interests may change over time. Monthly sentiment values were used to reflect changes over time. To do this, we used TripAdvisor review data and selected tourist spot compared to the average number of reviews. In order to build a prediction model, input variables were selected as Model 1 classified by 3 emotions (positive, neutral, negative), Model 2 classified by 8 emotions (trust, anticipation, joy, surprise, fear, anger, sadness, disgust), and Model 3 applying both Model 1 and Model 2 classifications. We developed a prediction model for Model 1, Model 2, and Model 3 to predict tourist spot using machine learning techniques such as logit, neural networks, and SVM(Support Vector Machines). As a result, Model 3 using SVM showed the best prediction performance.

목차

Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 연구 프레임워크
Ⅳ. 실험 및 결과분석
Ⅴ. 결론
참고문헌

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-323-001137502