메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
장규철 (한국과학기술원 전자전산학과) 우수영 (한국과학기술원 전자전산학과) 진민호 (한국과학기술원 전자전산학과) 박용규 (한국과학기술원 전자전산학과) 유창동 (한국과학기술원 전자전산학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제22권 제3호
발행연도
2003.1
수록면
188 - 193 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
이전의 여러 가지 화자 적응을 위한 모델 적응 방법은 훈련 환경과 테스트 환경의 불일치를 보상하기 위한 방법으로 적응데이터의 테스트 환경에서의 분포를 고려하지 않은 보상 방법이었다. 적은 적응 데이터에 대해서 보상을 극대화하기 위한 파라미터 변환 방법들은 고르지 못한 적응 데이터에 의해 시스템의 성능이 저하 될 가능성이 있다 즉, 데이터가 적을 경우에는 적응 데이터의 분포가 적응 결과에 중대한 영향을 미치게 된다. 적은 데이터에 대해서도 높은 인식률 향상을 가져오기 위한 supervised 훈련과정을 구조적 사후확률 최대화(SMAP: Structural Maximum a Posterior) 알고리듬에 적용하였다. 제안된 가중치 SMAP (Weighted SMAP) 알고리듬과 SMAP알고리듬을 TIDIGITS 코퍼스를 사용해서 비교해 보았다. 제안된 WSMAP은 적은 양의 데이터에 대해서 SMAP보다 좋은 성능을 나타내었다. 환경 적응에 적응 데이터의 분포를 고려하는 이와 같은 방법은 다른 적응 알고리듬에도 적용될 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0