메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
표현아 (한국과학기술원 전자전산학과 전산학) 김세현 (한국과학기술원 전자전산학과 전산학) 오영환 (한국과학기술원 전자전산학과 전산학)
저널정보
한국음향학회 한국음향학회 학술발표대회 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
발행연도
2002.1
수록면
37 - 40 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근 음성 인식 시스템의 성능 향상을 위해 화자 적응(speaker adaptation)에 대한 연구가 활발히 진행되고 있다. HMM 기반 인식 시스템의 모델 파라미터를 수정하는 화자 적응의 경우, MAP 방법과 MLLR 방법에 대한 연구가 주류를 이루고 있다. 두 방법은 adaptation data의 양에 따라서 서로 다른 성능을 보인다. 본 논문에서는 adaptation data의 quality를 정의하고, 이를 기존 두 방법의 가중치로 이용하여 화자 적응을 수행하는 방법을 제안한다. 제안한 방법을 KAIST 통신연구실에서 구축한 한국어 도시이름 500단어 인식 시스템에 적용하여 성능을 개선하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0