메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김동화 (밀양산업대학교 정보통신공학과) 김형순 (부산대학교 전자공학과) 김영호 (부산대학교 전자계산학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제16권 제6호
발행연도
1997.1
수록면
106 - 109 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
고립단어 음성인식 시스템이 실용적이 되려면 인식 대상 이외의 단어를 거절할 수 있는 기능이 요구된다. 본 논문에서는 집단화된 음소 모델과 likelihood ratio에 의한 후처리 방법을 사용하여 거절기능을 구현하는 방법을 제안하였다. 기본적인 음성인식 시스템은 단어 단위 연속 HMM을 사용하였고, 6개의 집단화된 음소 모델들은 음성학적으로 균형잡힌 음성 데이터베이스를 이용하여 훈련된 45개의 문맥독립 음소 모델들로부터 통계적 방법에 의하여 생성되었다. 22개의 부서 명칭을 대상으로 한 화자독립 고립단어 인식시스템에서 거절성능을 시험하여 본 결과, 가장 높은 확률값과 두 번째 높은 확률값을 가지는 후보단어들 간의 차이값에 의하여 거절기능을 수행하는 기존의 후처리 방법보다 성능이 향상됨을 알 수 있었다. 또한 이 집단화된 음소모델은 인식 대상 어휘가 다른 고립단어 인식 시스템에도 재훈련 없이 그대로 사용될 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0