메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
황병한 (부산대학교 전자공학과)
저널정보
한국음향학회 한국음향학회 학술발표대회 한국음향학회 1998년도 학술발표대회 논문집 제5권
발행연도
1998.1
수록면
60 - 63 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 사용자가 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경이 가능한 가변어휘 인식시스템에 관하여 기술한다. 가변어휘 음성인식에서는 미리 구성된 음소모델을 토대로 인식대상 어휘가 결정되명 발음사전에 의거하여 이들 어휘에 해당하는 음소모델을 연결함으로써 단어모델을 만든다. 사용된 음소모델은 현재 음소의 앞뒤의 음소 context를 고려한 문맥종속형(Context-Dependent)음소모델인 triphone을 사용하였고, 연속확률분포를 가지는 Hidden Markov Model(HMM)기반의 고립단어인식 시스템을 구현하였다. 비교를 위해 문맥 독립형 음소모델인 monophone으로 인식실험을 병행하였다. 개발된 시스템은 음성특징벡터로 MFCC(Mel Frequency Cepstrum Coefficient)를 사용하였으며, test 환경에서 나타나지 않은 unseen triphone 문제를 해결하기 위하여 state-tying 방법중 음성학적 지식에 기반을 둔 tree-based clustering 기법을 도입하였다. 음소모델 훈련에는 ETRI에서 구축한 POW (Phonetically Optimized Words) 음성 데이터베이스(DB)[1]를 사용하였고, 어휘독립인식실험에는 POW DB와 관련없는 22개의 부서명을 50명이 발음한 총 1.100개의 고립단어 부서 DB[2]를 사용하였다. 인식실험결과 문맥독립형 음소모델이 88.6%를 보인데 비해 문맥종속형 음소모델은 96.2%의 더 나은 성능을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0