메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Hopkins, David W. (NIR Consultant, Battle Creek)
저널정보
한국근적외분광분석학회 한국근적외분광분석학회 학술발표회 한국근적외분광분석학회 2001년도 NIR-2001
발행연도
2001.1
수록면
1,041 - 1,041 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Removal of variability in spectra data before the application of chemometric modeling will generally result in simpler (and presumably more robust) models. Particularly for sparsely sampled data, such as typically encountered in diode array instruments, the use of Savitzky-Golay (S-G) derivatives offers an effective method to remove effects of shifting baselines and sloping or curving apparent baselines often observed with scattering samples. The application of these convolution functions is equivalent to fitting a selected polynomial to a number of points in the spectrum, usually 5 to 25 points. The value of the polynomial evaluated at its mid-point, or its derivative, is taken as the (smoothed) spectrum or its derivative at the mid-point of the wavelength window. The process is continued for successive windows along the spectrum. The original paper, published in 1964 [1] presented these convolution functions as integers to be used as multipliers for the spectral values at equal intervals in the window, with a normalization integer to divide the sum of the products, to determine the result for each point. Steinier et al. [2] published corrections to errors in the original presentation [1], and a vector formulation for obtaining the coefficients. The actual selection of the degree of polynomial and number of points in the window determines whether closely situated bands and shoulders are resolved in the derivatives. Furthermore, the actual noise reduction in the derivatives may be estimated from the square root of the sums of the coefficients, divided by the NORM value. A simple technique to evaluate the actual convolution factors employed in the calculation by the software will be presented. It has been found that some software packages do not properly account for the sampling interval of the spectral data (Equation Ⅶ in [1]). While this is not a problem in the construction and implementation of chemometric models, it may be noticed in comparing models at differing spectral resolutions. Also, the effects on parameters of PLS models of choosing various polynomials and numbers of points in the window will be presented.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0