메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Mousses, Spyro (Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health)
저널정보
한국생물정보시스템생물학회 한국생물정보시스템생물학회 심포지엄 한국생물정보시스템생물학회 2000년도 International Symposium on Bioinformatics
발행연도
2000.1
수록면
74 - 82 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Prostate cancer initially responds and regresses in response to androgen depletion therapy, but most human prostate cancers will eventually recur, and re-grow as an androgen independent tumor. Once these tumors become hormone refractory, they usually are incurable leading to death for the patient. Little is known about the molecular details of how prostate cancer cells regress following androgen ablation and which genes are involved in the androgen independent growth following the development of resistance to therapy. Such knowledge would reveal putative drug targets useful in the rational therapeutic design to prevent therapy resistance and control androgen independent growth. The application of genome scale technologies have permitted new insights into the molecular mechanisms associated with these processes. Specifically, we have applied functional genomics using high density cDNA microarray analysis for parallel gene expression analysis of prostate cancer in an experimental xenograft system during androgen withdrawal therapy, and following therapy resistance, The large amount of expression data generated posed a formidable bioinformatics challenge. A novel template based gene clustering algorithm was developed and applied to the data to discover the genes that respond to androgen ablation. The data show restoration of expression of androgen dependent genes in the recurrent tumors and other signaling genes. Together, the discovered genes appear to be involved in prostate cancer cell growth and therapy resistance in this system. We have also developed and applied tissue microarray (TMA) technology for high throughput molecular analysis of hundreds to thousands of clinical specimens simultaneously. TMA analysis was used for rapid clinical translation of candidate genes discovered by cDNA microarray analysis to determine their clinical utility as diagnostic, prognostic, and therapeutic targets. Finally, we have developed a bioinformatic approach to combine pharmacogenomic data on the efficacy and specificity of various drugs to target the discovered prostate cancer growth associated candidate genes in an attempt to improve current therapeutics.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0