메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
윤주성 (고려대학교) 김현철 (고려대학교)
저널정보
한국어정보학회 한국어정보학회 학술대회 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
발행연도
2017.1
수록면
13 - 16 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
감성 분석에서 어휘 말뭉치는 기존의 전통적인 기계학습 방법에서 중요한 특징으로 사용되었다. 최근 딥러닝의 발달로 hand-craft feature를 사용하지 않아도 되는 End-to-End 방식의 학습이 등장했다. 하지만 모델의 성능을 높이기 위해서는 여전히 어휘말뭉치와 같은 특징이 모델의 성능을 개선하는데 중요한 역할을 하고 있다. 본 논문에서는 이러한 어휘 말뭉치를 Attention 모델과 $Na{\ddot{i}}ve$ bayes 모델을 기반으로 구축하는 방법에 대해 소개하며 구축된 어휘 말뭉치가 성능에 끼치는 영향에 대해서 Hierarchical Attention Network 모델을 통해 분석하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0