메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
김성원 (동양대학교 철도토목학과)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2011년도 학술발표회
발행연도
2011.1
수록면
473 - 473 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (9)

초록· 키워드

오류제보하기
Group method of data handling neural networks model (GMDH-NNM) is used to estimate daily reference evapotranspiration (ETo) using limited climatic variables such as max temperature ($T_{max}$), min temperature ($T_{min}$), mean wind speed ($W_{mean}$), mean relative humidity ($RH_{mean}$) and sunshine duration (SD). And, for the performances of GMDH-NNM, it consists of training and test performances, respectively. The training and test performances are carried out using daily time series data, respectively. From this research, we evaluate the impact of GMDH-NNM for the modeling of the nonlinear time series data. We should, thus, construct the credible data of the daily ETo data using GMDH-NNM, and can suggest the methodology for the irrigation and drainage networks system. Furthermore, this research represents that the strong nonlinear relationship such as ETo modeling can be generalized using GMDH-NNM.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0