메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김성원 (동양대학교) 김형수 (인하대학교)
저널정보
대한토목학회 대한토목학회논문집 B 大韓土木學會論文集 제28권 제2 B호
발행연도
2008.3
수록면
199 - 213 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (9)

초록· 키워드

오류제보하기
본 연구의 목적은 월별 증발접시 증발량과 월별 알팔파 기준증발산량의 모형화를 위한 통합운영방법을 개발하고 적용하는데 있다. 우리나라에서는 장기간동안 증발산계를 이용하여 알팔파 기준증발산량의 관측이 시행되지 않고 있으므로, Penman-Monteith(PM) 공식을 이용하여 산정된 값을 계측된 알팔파 기준증발산량으로 가정하였다. 통합운영 방법은 각각 추계학적 모형과 신경망모형의 적용으로 구성되어 있다. 추계학적 모형은 월별 증발접시 증발량과 월별 알팔파 기준증발산량에 대한 훈련자료의 모의발생을 위하여 적용되었으며, 신경망모형은 관측된 테스트자료를 합리적으로 계산하기 위하여 적용되었다. 고려된 6가지의 훈련패턴 중에서 1,000/PARMA(1,1)/GRNNM-GA 훈련패턴은 제시된 기상인자를 가장 양호하게 평가하였으며, 또한 월별 증발접시 증발량과 월별 알팔파 기준증발산량의 신뢰성있는 자료를 구축할 수 있다. 불확실성 분석은 1,000/PARMA(1,1)/GRNNM-GA 훈련패턴 으로부터 입력층노드의 기상인지를 제거하기 위하여 이용되었으며, 민감하거나 민감하지 않는 기상인지들이 불확실성 분석을 통하여 선택되어 진다, 마지막으로 통합운영방법을 이용하여 최소비용과 노력으로 월별 증발접시 증발량과 월별 알팔파 기준증발산량을 동시에 모형화가 가능하게 되었다.

목차

Abstract
요지
1. 서론
2. 추계학적 모형
3. 신경망모형과 훈련알고리즘
4. 연구대상의 선정 및 자료
5. 훈련패턴의 수행과정
6. 입력층 노드의 불확실성분석
7. 결론 및 추후 연구과제
감사의 글
참고문헌

참고문헌 (48)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-531-018587250