메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
최동진 (한국과학기술원) 오영환 (한국과학기술원)
저널정보
한국음향학회 한국음향학회 학술발표대회 한국음향학회 2004년도 추계학술발표대회논문집 제23권 2호
발행연도
2004.1
수록면
115 - 118 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
음성 인식 분야에서는 화자 적응을 통해 화자 독립 시스템의 성능을 화자 종속 시스템에 근접시키려는 여러 가지 노력이 시도되고 있다. 특히 30 초미만의 매우 적은 양의 적응 자료를 이용하는 고속 화자 적응에 대한 관심이 증가하고 있다. 고속 화자 적응에 적합한 eigenvoice 를 이용한 적응 방법은 eigenvoice 를 구성하기 위해 너무 많은 계산량과 메모리를 요구한다. 본 논문에서는 각각 따로 계산된 eigenvoice 들을 한 번에 구성한 eigenvoice 들과 거의 같은 정확도를 갖도록 병합하여 고속 화자 적응에 이용하는 방법을 제안한다. 이 방법을 이용하면 훈련 자료의 추가시 처음부터 새롭게 eigenvoice 를 구하는 대신 추가된 자료에 대한 eigenvoice 를 구하고 병합함으로써 계산량과 메모리양을 현저히 줄일 수 있다. 실험 결과, 메모리와 계산량은 추가되는 화자 종속 모델의 수에 따라 감소하며 성능 저하는 거의 없었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0