메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지식경영학회 지식경영연구 지식경영연구 제21권 제2호
발행연도
2020.1
수록면
177 - 196 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
K-IFRS(Korean International Financial Reporting Standards)도입 이후 주석의 양은 증가하였으나, 상투적 문구와 간결성의 부족으로 핵심정보 파악이 어려운 실정이다. 본 연구는 자동화를 통한 문제 해결 가능성을 보이기 위해, 유가증권시장과 코스닥에 상장된 기업의 2013년부터 2018년 공시를 대상으로 1분기 뒤 재무 비율을 예측하는 신경망 모델을 구축해, 재무제표 주석이 회사의 미래 재무비율 중에서도 주당순이익에 대한 예측을 하는데 도움이 되는 경향을 갖고 있는지 확인했다. Forward Chaining 검정 후 계산된 오차의 평균 값을 난수 Seed를 바꿔가며 표본을 얻은 뒤 비교한 결과, 주석데이터를 활용한 분석이 측정 오차가 유의하게 감소하였음을 확인하였다. 이는 정량적인 데이터만으로는 예측이 어려운 재량적 발생액이 주석데이터와 상관관계를 갖기 때문인 것으로 추론된다. 이 결과는 주석 텍스트 분석의 자동화를 통해, 공시일마다 대량의 주석을 분석하여 투자 결정에 활용할 수 있을 뿐만 아니라 로보어드바이저(Robo-advisor)와 같은 인공지능 재무분석 서비스에서 텍스트 분석 모듈 추가와 이에 필요한 인프라 구축에 준거가 될 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (45)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0