메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제26권 제2호
발행연도
2020.1
수록면
104 - 111 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Electronic Health Records (EHRs)-based surveillance systems are being actively developed for detecting adverse drug reactions (ADRs), but this is being hindered by the difficulty of extracting data from unstructured records. This study performed the analysis of ADRs from nursing notes for drug safety surveillance using the temporal difference method in reinforcement learning (TD learning). Methods: Nursing notes of 8,316 patients (4,158 ADR and 4,158 non-ADR cases) admitted to Ajou University Hospital were used for the ADR classification task. A TD(λ) model was used to estimate state values for indicating the ADR risk. For the TD learning, each nursing phrase was encoded into one of seven states, and the state values estimated during training were employed for the subsequent testing phase. We applied logistic regression to the state values from the TD(λ) model for the classification task. Results: The overall accuracy of TD-based logistic regression of 0.63 was comparable to that of two machine-learning methods (0.64 for a naïve Bayes classifier and 0.63 for a support vector machine), while it outperformed two deep learning-based methods (0.58 for a text convolutional neural network and 0.61 for a long short-term memory neural network). Most importantly, it was found that the TD-based method can estimate state values according to the context of nursing phrases. Conclusions: TD learning is a promising approach because it can exploit contextual, time-dependent aspects of the available data and provide an analysis of the severity of ADRs in a fully incremental manner.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0