메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Phauk Sokkhey (University of the Ryukyus 1 Senbaru) Sin Navy (Ministry of Education, Youth and Sport) Ly Tong (Royal Academy of Cambodia) Takeo Okazaki (University of the Ryukyus 1 Senbaru)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.3
발행연도
2020.6
수록면
217 - 229 (13page)
DOI
10.5573/IEIESPC.2020.9.3.217

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Education is crucial for the development of any country. Analysis of education datasets requires effective algorithms to extract hidden information and gain the fruitful results to improve academic performance. Multiple models were used to maximize the contribution to the education environment. In this study, we used the spot-checking algorithm to compare these methods and find the most effective method. We propose three main classes of education research tools: a statistical analysis method, machine learning algorithms, and a deep learning framework. The data were obtained from many high schools in Cambodia. We introduced feature selection techniques to figure out the informative features that affect the future performance of students in mathematics. The proposed ensemble methods of tree-based classifiers provide satisfiying results, and in that, random forest algorithm generates the highest accuracy and the lowest predictive mean squared error, thus showing potential in this prediction and classification problem. The results from this work can be used as recipe and recommendation for mining various material settings in improving high school student performance in Cambodia.

목차

Abstract
1. Introduction
2. Review of Previous Works
3. Research Methods
4. Data Collection and Preprocessing Tasks
5. Experimental Results and Analysis
6. Feature Selection
7. Discussion and Conclusion
References

참고문헌 (41)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-000684313