메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Phauk Sokkhey (University of the Ryukyus) Takeo Okazaki (University of the Ryukyus)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.8 No.5
발행연도
2019.10
수록면
394 - 404 (11page)
DOI
10.5573/IEIESPC.2019.8.5.394

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Measuring students’ performance and observing their learning behaviors are challenging tasks that can assist students and teachers in keeping track of progress in academic performance. Predicting student performance in mathematics has gained considerable attention from many researchers. Because a single tool may not be easily scalable from one context to another, several learning algorithms have been observed and compared for selecting an optimized prediction model. In this paper, we proposed a comparative study of the statistical analysis (SA) technique, machines learning (ML) algorithms, and a deep learning architecture for predicting student performance in mathematics. A proposed predictive structural equation modeling of SA, five superior classifiers in ML, and a graphical model for deep learning were executed and compared. Three datasets named, DS1, DS2, and DS3 were used in this analysis. We applied two main evaluation metrics, accuracy and predictive mean square error (PMSE), to measure the performance of the proposed models. On the three datasets, random forest produced the highest accuracy and the smallest PMSE which shows its potential as the best prediction model for the problem.

목차

Abstract
1. Introduction
2. Related Work
3. Research Methods
4. Research Design
5. Experimental Results and Analysis
6. Discussion
7. Conclusion
References

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-569-001222252