메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김태현 (한양대학교)
저널정보
한국방송·미디어공학회 방송과 미디어 방송과 미디어 제25권 제2호
발행연도
2020.4
수록면
27 - 35 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 많은 연구 결과물에서 빅데이터를 이용하여 학습된 뉴럴 네트워크가 영상 내 노이즈를 제거하는데 매우 효과적임이 입증되었다. 여기에서 한 걸음 더 나아가, 입력으로 주어진 노이즈가 있는 영상의 특징을 분석하여, 사전에 학습된 네트워크의 파라미터를 테스트 타임에 동적으로 업데이트함으로써 주어진 입력 영상을 더욱 잘 처리할 수 있도록 하는 연구들이 시도되고 있다. 본 원고에서는 이와 같이 테스트 타임에 주어지는 입력 영상을 네트워크 학습에 사용하는(self-supervision) 이미지 복원 기법들을 소개한다. 다음으로, 기존의 self-supervision을 이용하는 기법들 대비 학습 효율성과 정확도를 더욱 향상시킬 수 있는 새로운 형태의 네트워크 파라미터 업데이트 기법을 설명하고, 제안하는 기법의 우수성을 다양한 실험 결과를 통해 분석 및 입증한다.

목차

요약
Ⅰ. 서론
Ⅱ. 이미지 복원을 위한 네트워크 파라미터의 동적 업데이트 기법의 개요
Ⅲ. 이미지 복원 네트워크의 동적 업데이트 알고리즘
Ⅳ. 실험 결과
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-000577211