메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유경상 (Korea Institute of Energy Research) 김호찬 (Jeju National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제24권 제1호
발행연도
2020.3
수록면
333 - 338 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 역전파 뉴럴 네트워크(Back Propagation Neural Network; BPNN) 알고리즘을 이용한 배터리 셀의 잔존용량(State Of Charge; SOC) 추정 방법을 제안한다. 이를 위해 배터리 성능평가 시뮬레이터를 구현하고 다양한 온도에서의 충방전 실험을 통해 뉴럴 네트워크 학습에 필요한 입출력 데이터를 도출한다. 최종적으로 배터리의 SOC 추정 성능은 Matlab/Simulink 프로그램을 이용하여 Ah-counting에 의한 실험치와 비교를 통해 분석하고 오차율을 3% 미만으로 줄일 수 있음을 시뮬레이션을 통해 확인한다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (5)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-056-000546963