메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정민혁 (한국항공대학교) 유용현 (한국항공대학교) 박성준 (한국항공대학교) 황승준 (한국항공대학교) 백중환 (한국항공대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제3호
발행연도
2020.3
수록면
384 - 390 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
영화나 VR 콘텐츠 제작 시 음향에 잔향 효과를 주는 것은 현장감과 생동감을 느끼게 하는데 매우 중요한 요소이다. 공간에 따른 음향의 잔향 시간은 RT60(Reverberation Time 60㏈)이라는 표준에서 권고된다. 본 논문에서는 음향편집 시 자동 잔향 편집을 위한 장면 인식 기법을 제안한다. 이를 위해 컬러 이미지와 예측된 깊이 이미지를 동일한 모델에 독립적으로 학습하는 분류 모델을 설계하였다. 실내 장면 분류는 내부 구조가 유사한 클래스가 존재하여 컬러 정보 학습만으로는 인식률의 한계가 존재한다. 공간의 깊이 정보를 사용하기 위해 딥러닝 기반의 깊이 정보 추출 기술을 사용하였다. RT60을 기반으로 총 10개의 장면 클래스를 구성하고 모델 학습 및 평가를 진행하였다. 최종적으로 제안하는 SCR+DNet(Scene Classification for Reverb+Depth Net) 분류기는 92.4%의 정확도로 기존의 CNN 분류기들보다 더 높은 성능을 달성하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
REFERENCES

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000538247