메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2019
발행연도
2019.10
수록면
356 - 360 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Visual driving scene perception systems have been gained popularity among the autonomous driving research community following the advent of deep learning technology. Moreover, the multi-task deep learning model has been an important tool with respect to unifying the tasks performed in a driving scene perception system, such as scene classification, object detection, segmentation, depth estimation. In this paper, we introduce our developed multi-task deep-learning model design and training tool, for unified road scene perception model. Additionally, we also propose a sequential auxiliary multi-task training method that can train a multi-task model, using different datasets for each tasks. Finally, we present a unified road segmentation and depth estimation model, based on multi-task deep learning, to verify the efficiency and feasibility of our developed tool. Experimental results for KITTI datasets show that our tool-based unified road segmentation and depth estimation model can successfully segment the driving road and estimate its depth.

목차

Abstract
1. INTRODUCTION
2. MULTI-TASK DEEP LEARNING DESIGN AND TRAINING TOOL
3. UNIFIED ROAD SEGMENTATION AND DEPTH ESTIMATION MODEL
4. EXPERIMENTAL RESULT
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0