메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강민제 (제주대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제21권 제2호
발행연도
2020.2
수록면
189 - 194 (6page)

이용수

DBpia Top 0.1%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 신경망을 학습하는 데 가장 많이 사용되고 있는 경사하강법에 대해 분석하였다. 학습이란 손실함수가 최소값이 되도록 매개변수를 갱신하는 것이다. 손실함수는 실제값과 예측값의 차이를 수치화 해주는 함수이다. 경사하강법은 오차가 최소화되도록 매개변수를 갱신하는데 손실함수의 기울기를 사용하는 것으로 현재 최고의 딥러닝 학습알고리즘을 제공하는 라이브러리에서 사용되고 있다. 그러나 이 알고리즘들은 블랙박스형태로 제공되고 있어서 다양한 경사하강법들의 장단점을 파악하는 것이 쉽지 않다. 경사하강법에서 현재 대표적으로 사용되고 있는 확률적 경사하강법(Stochastic Gradient Descent method), 모멘텀법(Momentum method), AdaGrad법 그리고 Adadelta법의 특성에 대하여 분석하였다. 실험 데이터는 신경망을 검증하는 데 널리 사용되는 MNIST 데이터 셋을 사용하였다. 은닉층은 2개의 층으로 첫 번째 층은 500개 그리고 두 번째 층은 300개의 뉴런으로 구성하였다. 출력 층의 활성화함수는 소프트맥스함수이고 나머지 입력 층과 은닉 층의 활성화함수는 ReLu함수를 사용하였다. 그리고 손실함수는 교차 엔트로피 오차를 사용하였다.

목차

요약
Abstract
1. 서론
2. 다층신경망 학습
3. 신경망 학습 알고리즘
4. 실험 및 결과
5. 결론
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0