메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
문상준 (서울시립대) 전종준 (서울시립대)
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제28권 제6호
발행연도
2017.11
수록면
1,245 - 1,255 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
온라인 학습은 자료가 실시간으로 혹은 배치 단위로 축적되는 상황에서 주어진 목적함수의 해를 계산하는 방법을 말한다. 온라인 학습 알고리즘 중 배치를 이용한 확률적 경사 하강법 (stochastic gradient decent method)은 가장 많이 사용되는 방법 중 하나다. 이 방법은 구현이 쉬울 뿐만 아니라 자료가 동질적인 분포를 따른다는 가정 하에서 그 해의 성질이 잘 연구되어 있다. 하지만 자료에 특이값이 있거나 임의의 배치가 확률적으로 이질적 성질을 가질 때, 확률적 경사 하강법이 주는 해는 큰 편이를 가질 수 있다. 본 연구에서는 이러한 비정상 배치 (abnormal batch) 있는 자료 하에서 효과적으로 온라인 학습을 수행할 수 있는 수정된 경사 하강 알고리즘 (modified gradient decent algorithm)을 제안하고, 그 알고리즘을 통해 계산된 해의 수렴성을 밝혔다. 뿐만 아니라 간단한 모의실험을 통해 제안한 방법의 이론적 성질을 실증하였다.

목차

요약
1. 서론
2. 본론
3. 모의 실험
4. 결론
References
Abstract

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0