메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
고석민 (순천향대학교) 양재혁 (순천향대학교) 최원준 (순천향대학교) 김태근 (순천향대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제32권 제5호
발행연도
2022.10
수록면
933 - 943 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인터넷이 발달하고 컴퓨터 이용률이 높아짐에 따라 악성코드로 인한 위협 또한 함께 증가하고 있다. 매년 발견되는 악성코드의 수는 급격히 증가하여 자동으로 대량의 악성코드를 분석하기 위한 시스템이 필요한 상황이다. 본 논문에서는 딥러닝 알고리즘을 활용한 악성코드 자동 분석 기법을 소개한다. CNN(Convolutional Neural Network)라는 이미지 분류에 활용도가 높은 알고리즘을 이용하여 악성코드의 특징을 이미지화한 데이터를 분석한다. 제안하는 방법은 악성코드의 Semantic한 정보를 탐지에 활용하기 위하여 단순 바이너리 바이트를 기반으로 생성한 이미지가 아닌, 바이너리의 명령어 빈도수를 기반으로 생성한 이미지를 CNN으로 분석한다. 악성코드 10,000개 정상코드 10,000개로 구성된 대량의 데이터 셋을 활용하여 탐지 성능을 확인한 결과, 제안하는 방법은 91%의 정확도로 악성코드를 탐지할 수 있음이 확인되었다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 제안 방법
IV. 실험
V. 결론
References

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0