메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
부주훈 (고려대학교) 이경호 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제30권 제3호
발행연도
2020.6
수록면
357 - 367 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
2018년 시만텍 보고서에 따르면, 모바일 환경에서 변종 악성 앱은 전년도 대비 54% 증가하였고, 매일 24,000개의 악성 앱이 차단되고 있다. 최근 연구에서는 기존 악성 앱 분석 기술의 사용 한계를 파악하고, 신ㆍ변종 악성 앱을 탐지하기 위하여 기계학습을 통한 악성 앱 탐지 기법이 연구되고 있다. 하지만, 기계학습을 적용하는 경우에도 악성 앱의 특성을 적절하게 선택하여 학습하지 못하면 올바른 결과를 보일 수 없다. 본 연구에서는 신ㆍ변종 악성 앱의 특성을 찾아낼 수 있도록 개선된 특성 선택 방법을 적용하여 학습 모델의 정확도를 최고 98%까지 확인할 수 있었다. 향후 연구를 통하여 정밀도, 재현율 등 특정 지표의 향상을 목표로 할 수 있다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 악성 앱 탐지 모델
IV. 결론
References

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000852142