메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
박재우 (서울대학교) 이은지 (서울대학교) 조남익 (서울대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2019 추계학술대회
발행연도
2019.11
수록면
50 - 53 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 도메인 어댑테이션을 이용하여 폰트 변화에 강인한 한글 분류기를 학습하는 방법을 제안한다. 제안하는 네트워크 모델은 총 7 개로 이루어져 있으며 각각 이미지로부터 폰트에 무관한 정보를 추출하는 인코더, 추출된 정보의 유효성을 판단하기 위해 이미지 재합성에 사용되는 디코더, 재합성된 이미지의 글자 분류기, 폰트 분류기, 재합성된 글자의 정교함을 판단하는 판별기(discriminator), 그리고 인코더에서 추출된 정보에 대한 글자 분류기, 폰트 분류기이다. 본 논문에서는 적대적 생성 신경망의 학습법을 따르는 도메인 어댑테이션 기법을 이용하여 인코더의 추출 정보가 폰트 정보는 속이면서 글자 분류의 정확성은 높이도록 학습하였다. 학습 결과 인코더로부터 추출되는 정보들은 폰트에 무관한 성질을 지니면서 글자 분류에 높은 정확성을 띄었으며, 추가로 디코더에서 나오는 이미지들도 원본 폰트와 같은 이미지를 생성해 낼 수 있었다.

목차

요약
1. 서론
2. 비지도 도메인 어댑테이션
3. 실험 방법
4. 실험 결과 및 분석
5. 결론
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-000347022