메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
양진혁 (한동대학교, 전산전자공학부) 곽효빈 (한동대학교, 전산전자공학부) 김인중 (한동대학교, 전산전자공학부)
저널정보
한국어정보학회 한국어정보학회 학술대회 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
발행연도
2017.1
수록면
8 - 12 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 딥러닝을 이용해 3300종에 이르는 다양한 한글 폰트를 인식하였다. 폰트는 디자인 분야에 있어서 필수적인 요소이며 문화적으로도 중요하다. 한글은 영어권 언어에 비해 훨씬 많은 문자를 포함하고 있기 때문에 한글 폰트 인식은 영어권 폰트 인식보다 어렵다. 본 연구에서는 최근 다양한 영상 인식 분야에서 좋은 성능을 보이고 있는 CNN을 이용해 한글 폰트 인식을 수행하였다. 과거에 이루어진 대부분의 폰트 인식 연구에서는 불과 수 십 종의 폰트 만을 대상으로 하였다. 최근에 이르러서야 2000종 이상의 대용량 폰트 인식에 대한 연구결과가 발표되었으나, 이들은 주로 문자의 수가 적은 영어권 문자들을 대상으로 하고 있다. 본 연구에서는 CNN을 이용해 3300종에 이르는 다양한 한글 폰트를 인식하였다. 많은 수의 폰트를 인식하기 위해 두 가지 구조의 CNN을 이용해 폰트인식기를 구성하고, 실험을 통해 이들을 비교 평가하였다. 특히, 본 연구에서는 3300종의 한글 폰트를 효과적으로 인식하면서도 학습 시간과 파라미터의 수를 줄이고 구조를 단순화하는 방향으로 모델을 개선하였다. 제안하는 모델은 3300종의 한글 폰트에 대하여 상위 1위 인식률 94.55%, 상위 5위 인식률 99.91%의 성능을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0