메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김충일 (고려대학교) 정승원 (고려대학교) 문지훈 (고려대학교) 황인준 (고려대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.46 No.10
발행연도
2019.10
수록면
1,012 - 1,019 (8page)
DOI
10.5626/JOK.2019.46.10.1012

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
적대적 생성 신경망은 두 개의 네트워크를 적대적으로 학습시켜 원본 데이터 분포를 추정하고, 이를 기반으로 데이터를 생성하는데 탁월한 모델이지만, 학습 도중 분포를 학습하지 못하는 모드 드롭 현상이나 하나 또는 매우 적은 분포의 샘플만을 생성하는 모드 붕괴 현상이 종종 나타난다. 이 현상을 감지하기 위해 기존 연구들은 학습 데이터를 통제하거나 별도의 신경망 모델을 학습시켜야 하는 한계점을 보였다. 이에 본 논문은 프레셋 거리를 단순화하여 추가적인 모델이나 학습 데이터의 제한 없이 모드 붕괴를 검출하는 기법을 제안한다. 다양한 실험을 통하여 제안하는 거리 척도가 기존의 적대적 생성 신경망에 적용된 척도에 비해 더욱 효과적으로 모드 드롭 및 붕괴를 검출할 수 있음을 보인다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 단순화한 프레셋 거리
4. 실험 및 결과
5. 결론
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0