메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
전동하 (Korea National Defense University) 이수진 (Korea National Defense University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제11호(통권 제224호)
발행연도
2022.11
수록면
123 - 130 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
최근 API Call 정보를 기반으로 안드로이드 악성코드를 탐지 및 분류하는 연구가 활발하게 진행되고 있다. 그러나 API Call 기반의 악성코드 분류는 방대한 데이터 양과 높은 차원 특성으로 인해 악성코드 분석과 학습 모델 구축 과정에서 과도한 시간과 자원이 소모된다는 심각한 제한사항을 가진다. 이에 본 연구에서는 방대한 API Call 정보를 포함하고 있는 CICAndMal2020 데이터세트를 대상으로 PCA(Principal Component Analysis, 주성분분석)를 사용하여 차원을 대폭 축소시킨 후 LightGBM, Random Forest, k-Nearest Neighbors 등의 다양한 분류 기법 모델을 적용하여 결과를 분석하였다. 그 결과 PCA가 원본 데이터의 특성을 유지하면서 데이터 특성의 차원은 획기적으로 감소시키고 우수한 악성코드 분류 성능을 달성함을 확인하였다. 이진분류 및 다중분류 모두 데이터 특성을 전체 크기의 1% 수준 이하로 줄이더라도 이전 연구 결과보다 높은 수준의 정확도를 나타내었다.

목차

Abstract
요약
I. Introduction
II. Previous Works
III. The Proposed Scheme
IV. Experimental Results
V. Conclusion
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0