메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
SeonTaek Oh (Handong Global University) Ji-Hwan You (Handong Global University) Young-Keun Kim (Handong Global University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2019
발행연도
2019.10
수록면
1,070 - 1,073 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Most machine vision systems for bolt inspection are implemented on PC-based platforms for an embedded platform have limited computation performance. In order to implement a bolt inspection machine vision system on an embedded platform with advantages of high power-efficiency and lower cost as well as improved computation power, this paper proposes accelerating bolt inspection algorithms on an SoC of Embedded CPU and FPGA using Hardware- Software codesign methods. First, image processing algorithms for bolt defect detection are designed and implemented on an embedded CPU (ARM Cortex-A53). Then, the computation load of each algorithms is analyzed to find key functions responsible for CPU bottleneck. These heavy loaded functions are identified as morphology, threshold, and center-finding, which are then accelerated using parallel processing on an FPGA. The proposed bolt machine vison algorithms of combining processing software (embedded CPU) and programmable logic (FPGA) were implemented on an SoC platform (Xilinx ZCU-104). Experiments conducted on images of normal and defected bolts showed that the proposed system could accelerate calculation speeds by up to 18.9 times, and the overall system by 1.3 times, compared to the software-only embedded CPU platform.

목차

Abstract
1. INTRODUCTION
2. BOLT INSPECTION ALGORITHM
3. FPGA ACCELERATION
4. EXPERIMENT RESULT
3. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0