메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ukyo Yoshimura (The University of Shiga Prefecture) Toshiyuki Inoue (The University of Shiga Prefecture) Akira Tsuchiya (The University of Shiga Prefecture) Keiji Kishine (The University of Shiga Prefecture)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.10 No.5
발행연도
2021.10
수록면
416 - 423 (8page)
DOI
10.5573/IEIESPC.2021.10.5.416

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Biometric systems require the regression and classification of biological sensing data, which are both carried out using machine learning. Long short-term memory (LSTM) is one of the most common methods used for regression and classification. We have developed and implemented a low-energy LSTM algorithm for the regression of microwave sensor signals in a small-scale FPGA. Experimental results show that the FPGA-based parallel-pipelined unrolled algorithm can reduce the computation time by 95% compared to an FPGA-based sequential algorithm. In addition, we found that the power consumption can be reduced by 92% and 91% compared to that obtained with a high-end GPU and CPU, respectively.

목차

Abstract
1. Introduction
2. Mathematical Expression for LSTM
3. Method of Implementation for Accelerating FPGA-based LSTM
4. Experiment and Results
5. Discussion
6. Conclusion
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-569-002167684